
A Parallelizable Acceleration Framework for Packing Linear Programs

Palma London
Caltech

plondon@caltech.edu

Shai Vardi
Caltech

svardi@caltech.edu

Adam Wierman
Caltech

adamw@caltech.edu

Hanling Yi
CUHK

yh014@ie.cuhk.edu.hk

Abstract

This paper presents an acceleration framework for packing
linear programming problems where the amount of data avail-
able is limited, i.e., where the number of constraints m is
small compared to the variable dimension n. The framework
can be used as a black box to speed up linear programming
solvers dramatically, by two orders of magnitude in our ex-
periments. We present worst-case guarantees on the quality
of the solution and the speedup provided by the algorithm,
showing that the framework provides an approximately op-
timal solution while running the original solver on a much
smaller problem. The framework can be used to accelerate
exact solvers, approximate solvers, and parallel/distributed
solvers. Further, it can be used for both linear programs and
integer linear programs.

1 Introduction
This paper proposes a black-box framework that can be used
to accelerate both exact and approximate linear program-
ming (LP) solvers for packing problems while maintaining
high quality solutions.

LP solvers are at the core of many learning and inference
problems, and often the linear programs of interest fall into
the category of packing problems. Packing problems are lin-
ear programs of the following form:

maximize
∑n
j=1 cjxj (1a)

subject to
∑n
j=1 aijxj ≤ bi i ∈ [m] (1b)

0 ≤ xj ≤ 1 j ∈ [n] (1c)

where A ∈ [0, 1]m×n, b ∈ Rm≥0, c ∈ Rn≥0.
Packing problems arise in a wide variety of settings, in-

cluding max cut (Trevisan 1998), zero-sum matrix games
(Nesterov 2005), scheduling and graph embedding (Plotkin,
Shmoys, and Tardos 1995), flow controls (Bartal, Byers, and
Raz 2004), auction mechanisms (Zurel and Nisan 2001),
wireless sensor networks (Byers and Nasser 2000), and
many other areas. In machine learning specifically, they
show up in an array of problems, e.g., in applications of
graphical models (Ravikumar, Agarwal, and Wainwright
2010), associative Markov networks (Taskar, Chatalbashev,

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Koller 2004), and in relaxations of maximum a poste-
riori (MAP) estimation problems (Sanghavi, Malioutov, and
Willsky 2008), among others.

In all these settings, practical applications require LP
solvers to work at extreme scales and, despite decades of
work, commercial solvers such as Cplex and Gurobi do not
scale as desired in many cases. Thus, despite a large litera-
ture, the development of fast, parallelizable solvers for pack-
ing LPs is still an active direction.

Our focus in this paper is on a specific class of packing
LPs for which data is either very costly, or hard to obtain. In
these situations m � n; i.e., the number of data points m
available is much smaller than the number of variables, n.
Such instances are common in areas such as genetics, astron-
omy, and chemistry. There has been considerable research
focusing on this class of problems in recent years, in the con-
text of LPs (Donoho and Tanner 2005; Bienstock and Iyen-
gar 2006) and also more generally in convex optimization
and compressed sensing (Candes, Romberg, and Tao 2006;
Donoho 2006), low rank matrix recovery (Recht, Fazel, and
Parrilo 2010; Candes and Plan 2011), and graphical models
(Yuan and Lin 2007a; Mohan et al. 2014).

Contributions of this paper. We present a black-box ac-
celeration framework for LP solvers. When given a packing
LP and an algorithm A, the framework works by sampling
an εs-fraction of the variables and using A to solve LP (1)
restricted to these variables. Then, the dual solution to this
sampled LP is used to define a thresholding rule for the pri-
mal variables of the original LP; the variables are set to ei-
ther 0 or 1 according to this rule. The framework has the
following key properties:

1. It can be used to accelerate exact or approximate LP-
solvers (subject to some mild assumptions which we dis-
cuss below).

2. Since the original algorithm A is run only on a (much
smaller) LP with εs-fraction of the variables, the frame-
work provides a dramatic speedup.

3. The threshold rule can be used to set the values of the vari-
ables in parallel. Therefore, if A is a parallel algorithm,
the framework gives a faster parallel algorithm with neg-
ligible overhead.

4. Since the threshold rule sets the variables to integral val-

ues, the framework can be applied without modification
to solve integer programs that have the same structure as
LP (1), but with integer constraints replacing (1c).
There are two fundamental tradeoffs in the framework.

The first is captured by the sample size, εs. Setting εs small
yields a dramatic speedup of the algorithm A; however, if
εs is set too small the quality of the solution suffers. A sec-
ond tradeoff involves feasibility. In order to ensure that the
output of the framework is feasible w.h.p. (and not just that
each constraint is satisfied in expectation), the constraints of
the sample LP are scaled down by a factor denoted by εf .
Feasibility is guaranteed if εf is large enough; however, if it
is too large, the quality of the solution (as measured by the
approximation ratio) suffers.

Our main technical result is a worst-case characterization
of the impact of εs and εf on the speedup provided by the
framework and the quality of the solution. Assuming that al-
gorithm A gives a (1 + δ) approximation to the optimal so-
lution of the dual, we prove that the acceleration framework
guarantees a (1−εf)/(1+δ)2-approximation to the optimal
solution of LP (1), under some assumptions about the input
and εf . We formally state the result as Theorem 3.1, noting
here only that the result shows that εf grows proportionally
to 1/

√
εs, which highlights that the framework maintains a

high-quality approximation even when sample size is small
(and thus the speedup provided by the framework is large).

The technical requirements for εf in Theorem 3.1 impose
some restrictions on both the family of LPs that can be (the-
oretically) solved using our framework and the algorithms
that can be accelerated. In particular, Theorem 3.1 requires
mini bi to be large and the algorithm A to satisfy approx-
imate complementary slackness conditions (see Section 2).
While the condition on the bi is restrictive, the condition on
the algorithms is not – it is satisfied by most common LP
solvers, e.g., exact solvers and many primal dual approxi-
mation algorithms. Further, our experimental results demon-
strate that these technical requirements are conservative –
the framework produces solutions of comparable quality to
the original LP-solver in settings that are far from satisfy-
ing the theoretical requirements. In addition, the accelerator
works in practice for algorithms that do not satisfy approx-
imate complementary slackness conditions, e.g., for gradi-
ent algorithms such as (Sridhar et al. 2013). In particular,
our experimental results show that the accelerator obtains
solutions that are close in quality to those obtained by the
algorithms being accelerated on the complete problem, and
that the solutions are obtained considerably faster (by up to
two orders of magnitude). The results reported in this paper
demonstrate this by accelerating the state-of-the-art com-
mercial solver Gurobi on a wide array of randomly gener-
ated packing LPs and obtaining solutions with < 4% rela-
tive error and a more than 150× speedup. Other experiments
with other solvers are qualitatively the same and are not in-
cluded due to space constraints.

When applied to parallel algorithms, there are added op-
portunities for the framework to reduce error while increas-
ing the speedup, through speculative execution: the frame-
work runs multiple clones of the algorithm speculatively,
i.e., choosing multiple samples and running the original al-

gorithm and applying the thresholding rule each clone in
parallel, asynchronously. This improves both the solution
quality and the speed. It improves the quality of the so-
lution because the best solution across the multiple sam-
ples can be chosen. It improves the speed because it miti-
gates the impact of stragglers, tasks that take much longer
than expected due to contention or other issues. Incorpo-
rating “cloning” into the acceleration framework triples the
speedup obtained, while also reducing the error by 12%.

Summary of related literature. The approach underlying
our framework is motivated by recent work that uses ideas
from online algorithms to make offline algorithms more
scalable, e.g., (Mansour et al. 2012; London et al. 2017).
A specific inspiration for this work is (Agrawal, Wang, and
Ye 2014), which introduces an online algorithm that uses a
two step procedure: it solves an LP based on the first s stages
and then uses the solution as the basis of a rounding scheme
in later stages. The algorithm only works when the arrival
order is random, which is analogous to sampling in the of-
fline setting. However, (Agrawal, Wang, and Ye 2014) relies
on exactly solving the LP given by the first s stages; con-
sidering approximate solutions of the sampled problem (as
we do) adds complexity to the algorithm and analysis. Ad-
ditionally, we can leverage the offline setting to fine-tune εf
in order to optimize our solution while ensuring feasibility.

The sampling phase of our framework is reminiscent of
the method of sketching in which the data matrix is multi-
plied by a random matrix in order to compress the problem
and thus reduce computation time by working on a smaller
formulation, e.g., see (Woodruff 2014). However, the idea
of sketching is designed for overdetermined linear regres-
sion problems, m� n; thus making compression desirable.
In our case, the problem is underdetermined, m � n; thus
compression is not appropriate. Rather, the goal of sampling
is to be able to approximately determine the thresholds in
the second step of the framework. This difference means the
approaches are distinct.

The sampling phase of the framework is also reminiscent
of the experiment design problem, in which the goal is to
solve the least squares problem using only a subset of avail-
able data while minimizing the error covariance of the esti-
mated parameters, e.g., see (Boyd and Vandenberghe 2004).
Recent work (Riquelme, Johari, and Zhang 2017) applies
these ideas to online algorithms, when collecting data for
regression modeling. Like sketching, experiment design is
applied in the overdetermined setting, whereas we consider
the under-determined scenario. Additionally, instead of sam-
pling constraints, we sample variables.

The second stage of our algorithm is a thresholding step
and is related to the rich literature of LP rounding, see (Bert-
simas and Vohra 1998) for a survey. Typically, rounding is
used to arrive at a solution to an ILP; however we use thresh-
olding to “extend” the solution of a sampled LP to the full
LP. The scheme we use is a deterministic threshold based
on the complementary slackness condition. It is inspired by
(Agrawal, Wang, and Ye 2014), but adapted to hold for ap-
proximate solvers rather than exact solvers. In this sense, the
most related recent work is (Sridhar et al. 2013), which pro-

poses a scheme for rounding an approximate LP solution.
However, (Sridhar et al. 2013) uses all of the problem data
during the approximation step, whereas we show that it is
enough to use a (small) sample of the data.

A key feature of our framework is that it can be par-
allelized easily when used to accelerate a distributed or
parallel algorithm. There is a rich literature on distributed
and parallel LP solvers, e.g., (Yarmish and Slyke 2009;
Notarstefano and Bullo 2011; Burger et al. 2012; Richert and
Cortés 2015). More specifically, there is significant interest
in distributed strategies for approximately solving covering
and packing linear problems, such as the problems we con-
sider here, e.g., (Luby and Nisan 1993; Young 2001; Bar-
tal, Byers, and Raz 2004; Awerbuch and Khandekar 2008;
Allen-Zhu and Orecchia 2015).

2 A Black-Box Acceleration Framework
In this section we formally introduce our acceleration frame-
work. At a high level, the framework accelerates an LP
solver by running the solver in a black-box manner on a
small sample of variables and then using a deterministic
thresholding scheme to set the variables in the original LP.
The framework can be used to accelerate any LP solver that
satisfies the approximate complementary slackness condi-
tions. The solution of an approximation algorithm A for a
family of linear programs F satisfies the approximate com-
plementary slackness if the following holds. Let x1, . . . , xn
be a feasible solution to the primal and y1, . . . , ym be a fea-
sible solution to the dual.

• Primal Approximate Complementary Slackness: For
αp ≥ 1 and j ∈ [n], if xj > 0 then cj ≤

∑m
i=1 aijyi ≤

αp · cj .
• Dual Approximate Complementary Slackness: For αd ≥

1 and i ∈ [m], if yi > 0 then bi/αd ≤
∑n
i=1 aijxj ≤ bi.

We call an algorithm A whose solution is guaranteed to sat-
isfy the above conditions an (αp, αd)-approximation algo-
rithm for F . This terminology is non-standard, but is in-
structive when describing our results. It stems from a foun-
dational result which states that an algorithmA that satisfies
the above conditions is an α-approximation algorithm for
any LP in F for α = αpαd, (Buchbinder and Naor 2009).

The framework we present can be used to acceler-
ate any (1, αd)-approximation algorithm. While this is a
stronger condition than simply requiring that A is an α-
approximation algorithm, many common dual ascent al-
gorithms satisfy this condition, e.g., (Agrawal, Klein, and
Ravi 1995; Balakrishnan, Magnanti, and Wong 1989; Bar-
Yehuda and Even 1981; Erlenkotter 1978; Goemans and
Williamson 1995). For example, the vertex cover and Steiner
tree approximation algorithms of (Agrawal, Klein, and Ravi
1995) and (Bar-Yehuda and Even 1981) respectively are
both (1, 2)-approximation algorithms.

Given a (1, αd)-approximation algorithm A, the acceler-
ation framework works in two steps. The first step is to sam-
ple a subset of the variables, S ⊂ [n], |S| = s = dεsne,
and use A to solve the following sample LP, which we call
LP (2). For clarity, we relabel the variables so that the sam-

Algorithm 1: Core acceleration algorithm
Input: Packing LP L, LP solver A, εs > 0, εf > 0
Output: x̂ ∈ Rn

1. Select s = dnεse primal variables uniformly at random.
Label this set S.

2. Use A to find an (approximate) dual solution
ỹ = [φ, ψ] ∈ [Rm,Rs] to the sample LP.

3. Set x̂j = xj(φ) for all j ∈ [n].
4. Return x̂.

pled variables are labeled 1, . . . , s.
maximize

∑s
j=1 cjxj (2a)

subject to
∑s
j=1 aijxj ≤

(1−εf)εs
αd

bi i ∈ [m] (2b)

xj ∈ [0, 1] j ∈ [s] (2c)
Here, αd is the parameter of the dual approximate com-
plementary slackness guarantee of A, εf > 0 is a param-
eter set to ensure feasibility during the thresholding step,
and εs > 0 is a parameter that determines what fraction
of the primal variables are be sampled. Our analytic re-
sults give insight for setting εf and εs but, for now, both
should be thought of as close to zero. Similarly, while the
results hold for any αd, they are most interesting when
αd is close to 1 (i.e., αd = 1 + δ). There are many
such algorithms, given the recent interest in designing ap-
proximation algorithms for LPs, e.g.,(Sridhar et al. 2013;
Allen-Zhu and Orecchia 2015).

The second step in our acceleration framework uses the
dual prices from the sample LP in order to set a threshold
for a deterministic thresholding procedure, which is used to
build the solution of LP (1). Specifically, let φ ∈ Rm and
ψ ∈ Rs denote the dual variables corresponding to the con-
straints (2b) and (2c) in the sample LP, respectively. We
define the allocation (thresholding) rule xj(φ) as follows:

xj(φ) =

{
1 if

∑m
i=1 aijφi < cj

0 otherwise
We summarize the core algorithm of the acceleration

framework described above in Algorithm 1. When imple-
menting the acceleration framework it is desirable to search
for the minimal εf that allows for feasibility. This additional
step is included in the full pseudocode of the acceleration
framework given in Algorithm 2.

It is useful to make a few remarks about the generality of
this framework. First, since the allocation rule functions as a
thresholding rule, the final solution output by the accelerator
is integral. Thus, it can be viewed as an ILP solver based on
relaxing the ILP to an LP, solving the LP, and rounding the
result. The difference is that it does not solve the full LP, but
only a (much smaller) sample LP; so it provides a significant
speedup over traditional approaches. Second, the framework
is easily parallelizable. The thresholding step can be done in-
dependently and asynchronously for each variable and, fur-
ther, the framework can easily integrate speculative execu-
tion. Specifically, the framework can start multiple clones

Algorithm 2: Pseudocode for the full framework.
Input: Packing LP L, LP solver A, εs > 0, εf > 0
Output: x̂ ∈ Rn

Set εf = 0.
while εf < 1 do

x̂= Algorithm 1(L,A,εs,εf).
if x̂ is a feasible solution to L then

Return x̂.
else

Increase εf .

speculatively, i.e., take multiple samples of variables, run
the algorithm A on each sample, and then round each sam-
ple in parallel. This provides two benefits. First, it improves
the quality of the solution because the output of the “clone”
with the best solution can be chosen. Second, it improves the
running time since it curbs the impact of stragglers, tasks
that take much longer than expected due to contention or
other issues. Stragglers are a significant source of slowdown
in clusters, e.g., nearly one-fifth of all tasks can be catego-
rized as stragglers in Facebook’s Hadoop cluster (Anantha-
narayanan et al. 2013). There has been considerable work
designing systems that reduce the impact of stragglers, and
these primarily rely on speculative execution, i.e., running
multiple clones of tasks and choosing the first to complete
(canceling the remainder) (Ananthanarayanan et al. 2010;
2014; Ren et al. 2015). Running multiple clones in our ac-
celeration framework has the same benefit. To achieve both
the improvement in solution quality and running time, the
framework runs K clones in parallel and chooses the best
solution of the first k < K to complete. We illustrate the
benefit of this approach in our experimental results in Sec-
tion 3.

3 Results
In this section we present our main technical result, a worst-
case characterization of the quality of the solution pro-
vided by our acceleration framework. We then illustrate the
speedup provided by the framework through experiments us-
ing Gurobi, a state-of-the-art commercial solver.

3.1 A Worst-case Performance Bound
The following theorem bounds the quality of the solution
provided by the acceleration framework. Let L be a packing
LP with n variables and m constraints, as in (1), and B :=
mini∈[m]{bi}. For simplicity, take εsn to be integral.

Theorem 3.1. LetA be an (1, αd)-approximation algorithm
for packing LPs, with runtime f(n,m). For any εs > 0 and

εf ≥ 3
√

6(m+2) logn
εsB

, Algorithm 1 runs in time f(εsn,m)+

O(n) and obtains a feasible (1 − εf)/α2
d-approximation to

the optimal solution for L with probability at least 1− 1
n .

Proof. The approximation ratio follows from Lemmas 4.2
and 4.7 in Section 4, with a rescaling of εf by 1/3 in order to

simplify the theorem statement. The runtime follows from
the fact that A is executed on an LP with εsn variables and
at most m constraints and that, after running A, the thresh-
olding step is used to set the value for all n variables.

The key trade-off in the acceleration framework is be-
tween the size of the sample LP, determined by εs, and the
resulting quality of the solution, determined by the feasibil-
ity parameter, εf . The accelerator provides a large speedup
if εs can be made small without causing εf to be too large.
Theorem 3.1 quantifies this trade-off: εf grows as 1/

√
εs.

Thus, εs can be kept small without impacting the loss in so-
lution quality too much. The bound on εf in the theorem
also defines the class of problems for which the accelera-
tor is guaranteed to perform well—problems where m� n
and B is not too small. Nevertheless, our experimental re-
sults successfully apply the framework well outside of these
parameters—the theoretical analysis provides a very conser-
vative view on the applicability of the framework.

Theorem 3.1 considers the acceleration of (1, αd)-
approximation algorithms. As we have already noted, many
common approximation algorithms fall into this class. Fur-
ther, any exact solver satisfies this condition. For exact
solvers, Theorem 3.1 guarantees a (1 − εf)-approximation
(since αd = 1).

In addition to exact and approximate LP solvers, our
framework can also be used to convert LP solvers into ILP
solvers, since the solutions it provides are always integral;
and it can be parallelized easily, since the thresholding step
can be done in parallel. We emphasize these points below.

Corollary 3.2. Let A be an (1, αd)-approximation algo-
rithm for packing LPs, with runtime f(n,m). Consider εs >

0, and εf ≥ 3
√

6(m+2) logn
εsB

.

• Let IL be an integer program similar to LP (1) but
with integrality constraints on the variables. Running Al-
gorithm 1 on LP (1) obtains a feasible (1 − εf)/α

2
d-

approximation to the optimal solution for IL with proba-
bility at least 1− 1

n with runtime f(εsn,m) +O(n).
• IfA is a parallel algorithm, then executing Algorithm 1 on
p processors in parallel obtains a feasible (1 − εf)/α2

d-
approximation to the optimal solution for L or IL with
probability at least 1 − 1

n and runtime fp(εsn,m) +
O(n/p), where fp(εsn,m) denotes A’s runtime for the
sample program on p processors.

3.2 Accelerating Gurobi
We illustrate the speedup provided by our acceleration
framework by using it to accelerate Gurobi, a state-of-the-art
commercial solver. Due to limited space, we do not present
results applying the accelerator to other, more specialized,
LP solvers; however the improvements shown here provide
a conservative estimate of the improvements using parallel
implementations since the thresholding phase of the frame-
work has a linear speedup when parallelized. Similarly, the
speedup provided by an exact solver (such as Gurobi) pro-
vides a conservative estimate of the improvements when ap-
plied to approximate solvers or when applied to solve ILPs.

Note that our experiments consider situations where the
assumptions of Theorem 3.1 about B, m, and n do not hold.
Thus, they highlight that the assumptions of the theorem are
conservative and the accelerator can perform well outside of
the settings prescribed by Theorem 3.1. This is also true with
respect to the assumptions on the algorithm being acceler-
ated. While our proof requires the algorithm to be a (1, αd)-
approximation, the accelerator works well for other types of
algorithms too. For example, we have applied it to gradient
algorithm such as (Sridhar et al. 2013) with results that par-
allel those presented for Gurobi below.

Experimental Setup. To illustrate the performance of our
accelerator, we run Algorithm 2 on randomly generated LPs.
Unless otherwise specified, the experiments use a matrix
A ∈ Rm×n of size m = 102, n = 106. Each element of
A, denoted as aij , is first generated from [0, 1] uniformly at
random and then set to zero with probability 1 − p. Here, p
controls the sparsity of matrix A, and we vary p in the ex-
periments. The vector c ∈ Rn is drawn i.i.d. from [1, 100]
uniformly. Each element of the vector b ∈ Rm is fixed as
0.1n. (Note that the results are qualitatively the same for
other choices of b.) By default, the parameters of the accel-
erator are set as εs = 0.01 and εf = 0, though these are
varied in some experiments. Each point in the presented fig-
ures is the average of over 100 executions under different
realizations of A, c.

To assess the quality of the solution, we measure the rela-
tive error and speedup of the accelerated algorithm as com-
pared to the original algorithm. The relative error is defined
as (1 − Obj/OPT), where Obj is the objective value pro-
duced by our algorithm and OPT is the optimal objective
value. The speedup is defined as the run time of the original
LP solver divided by that of our algorithm.

We implement the accelerator in Matlab and use it to ac-
celerate Gurobi. The experiments are run on a server with
Intel E5-2623V3@3.0GHz 8 cores and 64GB RAM. We
intentionally perform the experiments with a small degree
of parallelism in order to obtain a conservative estimate of
the acceleration provided by our framework. As the degree
of parallelism increases, the speedup of the accelerator in-
creases and the quality of the solution remains unchanged
(unless cloning is used, in which case it improves).

Experimental Results. Our experimental results highlight
that our acceleration framework provides speedups of two
orders of magnitude (over 150×), while maintaining high-
quality solutions (relative errors of < 4%).

The trade-off between relative error and speed. The fun-
damental trade-off in the design of the accelerator is between
the sample size, εs, and the quality of the solution. The
speedup of the framework comes from choosing εs small,
but if it is chosen too small then the quality of the solution
suffers. For the algorithm to provide improvements in prac-
tice, it is important for there to be a sweet spot where εs is
small and the quality of the solution is still good, as indicated
in the shaded region of Figure 1.

Scalability. In addition to speeding up LP solvers, our ac-
celeration framework provides significantly improved scal-
ability. Because the LP solver only needs to be run on a

10
−4

10
−20

2

4

6

8

ε
s

R
el

at
iv

e
E

rr
or

(%
)

10
−4

10
−2 0

50

100

150

200

S
pe

ed
up

(a) p = 0.8

10
−4

10
−20

2

4

6

8

ε
s

R
el

at
iv

e
E

rr
or

(%
)

10
−4

10
−2 0

10

20

30

40

S
pe

ed
up

(b) p = 0.4

Figure 1: Illustration of the relative error and speedup
across sample sizes, εs. Two levels of sparsity, p, are shown.

100 200 300
0

2

4

6

8

m

R
el

at
iv

e
E

rr
or

(%
)

(a) Relative Error

0 200 400
0

200

400

600

m

R
un

tim
e

(s
)

Gurobi
Accelerator

(b) Runtime

Figure 2: Illustration of the relative error and runtime as the
problem size, m, grows.

(small) sample LP, rather than the full LP, the accelerator
provides order of magnitude increase in the size of prob-
lems that can be solved. This is illustrated in Figure 2. The
figure shows the runtime and relative error of the accel-
erator. In these experiments we have fixed p = 0.8 and
n/m = 103 as we scale m. We have set εs = 0.01 through-
out. As (a) shows, one can choose εs more aggressively in
large problems since leaving εs fixed leads to improved ac-
curacy for large scale problems. Doing this would lead to
larger speedups; thus by keeping εs fixed we provide a con-
servative estimate of the improved scalability provided by
the accelerator. The results in (b) illustrate the improvements
in scalability provided by the accelerator. Gurobi’s run time
grows quickly until finally, it runs into memory errors and
cannot arrive at a solution. In contrast, the runtime of the ac-
celerator grows slowly and can (approximately) solve prob-
lems of much larger size. To emphasize the improvement
in scalability, we run an experiment on a laptop with In-
tel Core i5 CPU and 8 GB RAM. For a problem with size
m = 102, n = 107, Gurobi fails due to memory limits. In
contrast, the accelerator produces a solution in 10 minutes
with relative error less than 4%.

The benefits of cloning. Speculative execution is an impor-
tant tool that parallel analytics frameworks use to combat the
impact of stragglers. Our acceleration framework can imple-
ment speculative execution seamlessly by running multiple
clones (samples) in parallel and choosing the ones that fin-
ish the quickest. We illustrate the benefits associated with
cloning in Figure 3. This figure shows the percentage gain
in relative error and speedup associated with using different
numbers of clones. In these experiments, we fix ε = 0.002

0 20 40
0

5

10

15

Number of Clones

R
el

at
iv

e
E

rr
or

 G
ai

n(
%

)

(a) Relative Error

0 20 40
20

40

60

80

Number of Clones

S
pe

ed
up

(b) Speedup

Figure 3: Illustration of the impact of cloning on solution
quality as the number of clones grows.

and p = 0.8. We vary the number of clones run and the
accelerator outputs a solution after the fastest four clones
have finished. Note that the first four clones do not impact
the speedup as long as they can be run in parallel. However,
for larger numbers of clones our experiments provide a con-
servative estimate of the value of cloning since our server
only has 8 cores. The improvements would be larger than
shown in Figure 3 in a system with more parallelism. De-
spite this conservative comparison, the improvements illus-
trated in Figure 3 are dramatic. Cloning reduces the rela-
tive error of the solution by 12% and triples the speedup.
Note that these improvements are significant even though
the solver we are accelerating is not a parallel solver.

4 Proofs
In this section we present the technical lemmas used to prove
Theorem 3.1. The approach of the proof is inspired by the
techniques in (Agrawal, Wang, and Ye 2014); however the
analysis in our case is more involved. This is due to the fact
that our result applies to approximate LP solvers while the
techniques in (Agrawal, Wang, and Ye 2014) only apply to
exact solvers. For example, this leads our framework to have
three error parameters (εs, εf , αd) while (Agrawal, Wang,
and Ye 2014) has a single error parameter.

The proof has two main steps: (1) show that the solu-
tion provided by Algorithm 1 is feasible with high proba-
bility (Lemma 4.2); and (2) show that the value of the so-
lution is sufficiently close to optimal with high probability
(Lemma 4.7). In both cases, we use the following concen-
tration bound, e.g., (van der Vaart and Wellner 1996).
Theorem 4.1 (Hoeffding-Bernstein Inequality). Let
u1, u2 . . . , us be random samples without replacement from
the real numbers r1, . . . , rn, where rj ∈ [0, 1]. For t > 0,

Pr
[
|
∑s
j=1 uj −

s
n

∑n
j=1 rj | ≥ t

]
≤ 2 exp

(
−t2

2sσ2
n+t

)
,

where σ2
n = 1

n

∑n
j=1(rj −

∑n
j=1 rj/n)

2.

Step 1: The solution is feasible
Lemma 4.2. Let A be a (αp, αd)-approximation algorithm
for packing LPs, αp, αd ≥ 1. For any εs > 0, εf ≥√

6(m+2) logn
εsB

, the solution Algorithm 1 gives to LP (1) is
feasible with probability at least 1 − 1/2n, where the prob-
ability is over the choice of samples.

Proof. Define a price-realization, R(φ), of a price vector φ
as the set {rij = aijxj(φ), j ∈ [n], i ∈ [m]} (note that
rij ∈ {0, aij}) and denote, a “row” of R(φ) as Ri(φ) =
{rij = aijxj(φ), j ∈ [n]}. We say that Ri(φ) is infeasible
if
∑
j∈[n] rij > bi. The approach of this proof is to bound

the probability that, for a given sample, the sample LP is
feasible while there is some i for whichRi(φ) is not feasible
in the original LP.

To begin, note that it naively seems that there are 2n pos-
sible realizations of R(φ), over all possible price vectors φ,
as xj ∈ {0, 1}. However, a classical result of combinatorial
geometry (Orlik and Terao 1992) shows that there are only
nm possible realizations since eachR(φ) is characterized by
a separation of n points ({cj , aj}nj=1) in an m-dimensional
plane by a hyperplane, where aj denotes the j-th column of
A. The maximal number of such hyperplanes is nm.

Next, we define a sample S ⊂ [n], |S| = εsn as Ri-good
if
∑
j∈S rij ≤ (1 − εf)εsbi. Let x̃ be the solution to the

sample LP for some sample S′. We say that S (possibly S 6=
S′) is x̃i-good if

∑
j∈S aij x̃j ≤

(1−εf)εs
αd

bi. The following
claim relates these two definitions. Its proof is omitted due
to space constraints.

Claim 4.3. If a sample S is x̃i-good then S is Ri-good.

Proof. Denote the dual solution of the sample LP by ỹ =
[φ̃, ψ̃]. The dual complementary slackness conditions im-
ply that, if ψ̃j > 0 then 1

αd
≤ x̃j ≤ 1 for j ∈ [s]. Fur-

ther, the allocation rule of Algorithm 1 sets xj(φ̃) = 1 if∑m
i=1 aij φ̃i < cj , which only occurs when ψ̃j > 0. There-

fore, if xj(φ̃) = 1, it implies that ψ̃j > 0, which in turn
implies that 1

αd
≤ x̃j . Consequently,

∑
j∈S

aijxj(φ̃) ≤
∑
j∈S

αdaij x̃j ≤ αd
(1− εf)εs

αd
bi

= (1− εf)εsbi,

which shows that S is Ri-good, completing the proof.

Next, fix the LP and R(φ). For the purpose of the proof,
choose i ∈ [n] uniformly at random. Next, we sample εsn
elements without replacement from n variables taking the
values {rij}. Call this sample S. Let X =

∑
j∈S rij be the

random variable denoting the sum of these random variables.
Note that E [X] = εs

∑
j∈N rij , where the expectation is

over the choice of S, and that the events
∑
j∈N rij > bi and

E [X] > εsbi are equivalent. The probability that a sample

is x̃i-good and Ri(φ) is infeasible is

Pr

∑
j∈S

aij x̃j ≤
(1− εf)εs

αd
bi ∧

∑
j∈N

rij > bi

≤ Pr

∑
j∈S

rij ≤ (1− εf)εsbi ∧
∑
j∈N

rij > bi

 (3)

≤ Pr

∑
j∈S

rij ≤ (1− εf)εsbi |
∑
j∈N

rij > bi

≤ Pr [|X − E [X] | > εf εsbi]

≤ 2 exp

(
−

ε2f ε
2
sb

2
i

2εsbi + εf εsbi

)
(4)

= 2 exp

(
−
ε2f εsbi

2 + εf

)
≤ 1

2nm+2
, (5)

where (3) is due to Claim 4.3, (4) uses Theorem 4.1, and (5)
uses the fact that B ≥ 6(m+2) logn

εsε2f
.

To complete the proof, we now take a union bound over
all possible realizations of R, which we bounded earlier by
nm, and values of i.

Step 2: The solution is close to optimal
To prove that the solution is close to optimal we make two
mild, technical assumptions.
Assumption 4.4. For any dual prices y = [φ, ψ], there are
at most m columns such that φTaj = cj .
Assumption 4.5. Algorithm A maintains primal and dual
solutions x and y = [φ, ψ] respectively with ψ > 0 only if∑n
j=1 aijxj < cj .
Assumption 4.4 does not always hold; however it can be

enforced by perturbing each cj by a small amount at ran-
dom (see, e.g., (Devanur and Hayes 2009; Agrawal, Wang,
and Ye 2014)). Assumption 4.5 holds for any “reasonable”
(1 − αd)-approximation dual ascent algorithm, and any al-
gorithm that does not satisfy it can easily be modified to do
so. These assumptions are used only to prove the following
claim, which is used in the proof of the lemma that follows.
The proof of the claim is omitted due to space restrictions.
Claim 4.6. Let x̃ and ỹ = [φ̃, ψ̃] be solutions of A to the
sampled LP (2). Then {xj(φ̃)}j∈[s] and {x̃j}j∈[s] differ on
at most m values of j.

Proof. For all j ∈ [s], if ψ̃j > 0 then x̃j = 1 by pri-
mary complementary slackness, and xj(φ̃) = 1 by def-
inition of the allocation rule (recall that if ψ̃j > 0 then∑
j aij φ̃i + ψ̃j = cj , by Assumption 4.5). Therefore any

difference between them must occur for j such that ψ̃j = 0.

For all ψ̃j = 0 such that
(
cj −

∑
j aij φ̃i

)
> 0, it must

hold that x̃j = 0 by complementary slackness, but then also
xj(φ̃) = 0 by the allocation rule. Assumption 4.4 then com-
pletes the proof.

Lemma 4.7. Let A be a (1, αd)-approximation algorithm
for packing LPs, αd ≥ 1. For any εs > 0, εf ≥√

6(m+2) logn
εsB

, the solution Algorithm 1 gives to LP (1) is
a (1 − 3εf)/α

2
d-approximation to the optimal solution with

probability at least 1− 1
2n , where the probability is over the

choice of samples.

Proof. Denote the primal and dual solutions to the sampled
LP in (2) of Algorithm 1 by x̃, ỹ = [φ̃, ψ̃]. For purposes of
the proof, we construct the following related LP.

maximize
∑n
j=1 cjxj (6)

subject to
∑n
j=1 aijxj ≤ b̃i i ∈ [m]

xj ∈ [0, 1] j ∈ [n],

where

b̃i =

{∑n
j=1 aijxj(φ̃) if φ̃i > 0

max{
∑n
j=1 aijxj(φ̃), bi} if φ̃i = 0

Note that b̃ has been set to guarantee that the LP is al-
ways feasible, and that x(φ̃) and y∗ = [φ̃, ψ∗] satisfy the
(exact) complementary slackness conditions, where ψ∗j =

cj −
∑m
i=1 aij if xj(φ̃) = 1, and ψ∗j = 0 if xj(φ̃) 6= 1. In

particular, note that ψ∗ preserves the exact complementary
slackness condition, as ψ∗j is set to zero when xj(φ̃) 6= 1.
Therefore x(φ̃) and y∗ = [φ̃, ψ∗] are optimal solutions to
LP (6).

A consequence of the approximate dual complementary
slackness condition for the solution x̃, ỹ is that the i-th pri-
mal constraint of LP (2) is almost tight when φ̃i > 0 :∑

j∈S
aij x̃j ≥

(1− εf)εs
(αd)2

bi.

This allows us to bound
∑
j∈S aijxj(φ̃) as follows.∑

j∈S
aijxj(φ̃) ≥

∑
j∈S

aij x̃j −m ≥
(1− 2εf)εs

(αd)2
bi,

where the first inequality follows from Claim 4.6 and the
second follows from the fact that B ≥ m(αd)

2

εf εs
. Thus:

Pr

∑
j∈[s]

rij ≥
(1− 2εf)εs

(αd)2
bi ∧

∑
j∈[n]

rij <
1− 3εf
(αd)2

bi

≤ Pr

[
|X − E [X] | > εf εs

(αd)2
bi

]
≤ 2 exp

(
−

ε2f εsbi

2(αd)4 + (αd)2εf

)
≤ 1

2nm+2
.

In the final step, we take αd close to one, i.e., we assume
3 ≥ 2(αd)

4 + (αd)
2εf . The constant 6 in the lemma can be

adjusted if application for larger αd is desired.
Applying the union bound gives that, with probability at

least 1 − 1
2n , it holds that b̃i ≥

∑
j∈[n] rij ≥

(1−3εf)
(αd)2

bi. It

follows that, if x∗ is an optimal solution toL, then (1−3εf)
(αd)2

x∗

is a feasible solution to LP (6). Thus, the optimal value of
LP (6) is at least (1−3εf)

(αd)2

∑n
j=1 cjx

∗
j .

References
Agrawal, A.; Klein, P.; and Ravi, R. 1995. When trees col-
lide: An approximation algorithm for the generalized steiner
problem on networks. SIAM J. on Comp. 24(3):440–456.
Agrawal, S.; Wang, Z.; and Ye, Y. 2014. A dynamic near-
optimal algorithm for online linear programming. Oper. Res.
62(4):876–890.
Allen-Zhu, Z., and Orecchia, L. 2015. Using optimiza-
tion to break the epsilon barrier: A faster and simpler width-
independent algorithm for solving positive linear programs
in parallel. In Proc. of SODA, 1439–1456.
Ananthanarayanan, G.; Kandula, S.; Greenberg, A. G.; Sto-
ica, I.; Lu, Y.; Saha, B.; and Harris, E. 2010. Reining in
the outliers in map-reduce clusters using mantri. In Proc. of
OSDI.
Ananthanarayanan, G.; Ghodsi, A.; Shenker, S.; and Stoica,
I. 2013. Effective straggler mitigation: Attack of the clones.
In Proc. of NSDI, 185–198.
Ananthanarayanan, G.; Hung, M. C.-C.; Ren, X.; Stoica, I.;
Wierman, A.; and Yu, M. 2014. Grass: Trimming stragglers
in approximation analytics. In Proc. of NSDI, 289–302.
Awerbuch, B., and Khandekar, R. 2008. Stateless distributed
gradient descent for positive linear programs. In Proc. of
STOC, STOC ’08, 691.
Balakrishnan, A.; Magnanti, T. L.; and Wong, R. T. 1989. A
dual-ascent procedure for large-scale uncapacitated network
design. Oper. Res. 37(5):716–740.
Bar-Yehuda, R., and Even, S. 1981. A linear-time approxi-
mation algorithm for the weighted vertex cover problem. J.
of Algs. 2(2):198 – 203.
Bartal, Y.; Byers, J. W.; and Raz, D. 2004. Fast dis-
tributed approximation algorithms for positive linear pro-
gramming with applications to flow control. SIAM J. on
Comp. 33(6):1261–1279.
Bertsimas, D., and Vohra, R. 1998. Rounding algorithms for
covering problems. Math. Prog. 80(1):63–89.
Bienstock, D., and Iyengar, G. 2006. Approximating
fractional packings and coverings in o(1/epsilon) iterations.
SIAM J. Comp. 35(4):825–854.
Boyd, S., and Vandenberghe, L. 2004. Convex Optimization.
Cambridge University Press.
Buchbinder, N., and Naor, J. 2009. The design of compet-
itive online algorithms via a primal-dual approach. Found.
and Trends in Theoretical Computer Science 3(2-3):93–263.
Burger, M.; Notarstefano, G.; Bullo, F.; and Allgower, F.
2012. A distributed simplex algorithm for degenerate lin-
ear programs and multi-agent assignment. Automatica
48(9):2298–2304.
Byers, J., and Nasser, G. 2000. Utility-based decision-
making in wireless sensor networks. In Mobile and Ad Hoc
Networking and Comp., 143–144.

Candes, E., and Plan, Y. 2011. Tight oracle inequalities
for low-rank matrix recovery from a minimal number of
noisy random measurements. IEEE Trans. on Info. Theory
57(4):2342–2359.
Candes, E.; Romberg, J.; and Tao, T. 2006. Robust uncer-
tainty principles: Exact signal reconstruction from highly in-
complete frequency information. IEEE Trans. Inform. The-
ory 52(2):489 – 509.
Devanur, N. R., and Hayes, T. P. 2009. The adwords prob-
lem: online keyword matching with budgeted bidders under
random permutations. In Proc. of EC, 71–78.
Donoho, D. L., and Tanner, J. 2005. Sparse nonnegative
solution of underdetermined linear equations by linear pro-
gramming. In Proc. of the National Academy of Sciences of
the USA, 9446–9451.
Donoho, D. L. 2006. Compressed sensing. IEEE Trans.
Inform. Theory 52:1289–1306.
Erlenkotter, D. 1978. A dual-based procedure for uncapaci-
tated facility location. Oper. Res. 26(6):992–1009.
Goemans, M. X., and Williamson, D. P. 1995. A general
approximation technique for constrained forest problems.
SIAM J. on Comp. 24(2):296–317.
London, P.; Chen, N.; Vardi, S.; and Wierman, A. 2017.
Distributed optimization via local computation algorithms.
http://users.cms.caltech.edu/ plondon/loco.pdf.
Luby, M., and Nisan, N. 1993. A parallel approximation al-
gorithm for positive linear programming. In Proc. of STOC,
448–457.
Mansour, Y.; Rubinstein, A.; Vardi, S.; and Xie, N. 2012.
Converting online algorithms to local computation algo-
rithms. In Proc. of ICALP, 653–664.
Mohan, K.; London, P.; Fazel, M.; Witten, D.; and Lee, S.-I.
2014. Node-based learning of multiple gaussian graphical
models. JMLR 15:445–488.
Nesterov, Y. 2005. Smooth minimization of non-smooth
functions. Math. Prog. 103(1):127–152.
Notarstefano, G., and Bullo, F. 2011. Distributed abstract
optimization via constraints consensus: Theory and applica-
tions. IEEE Trans. Autom. Control 56(10):2247–2261.
Orlik, P., and Terao, H. 1992. Arrangements of Hyperplanes.
Grundlehren der mathematischen Wissenschaften. Springer-
Verlag Berlin Heidelberg.
Plotkin, S. A.; Shmoys, D. B.; and Tardos, E. 1995. Fast ap-
proximation algorithms for fractional packing and covering
problems. Math. of Oper. Res. 20(2):257–301.
Ravikumar, P.; Agarwal, A.; and Wainwright, M. J. 2010.
Message passing for graph-structured linear programs:
Proximal methods and rounding schemes. JMLR 11:1043–
1080.
Recht, B.; Fazel, M.; and Parrilo, P. A. 2010. Guaranteed
minimum-rank solutions of linear matrix equations via nu-
clear norm minimization. SIAM Review 52(3):471–501.
Ren, X.; Ananthanarayanan, G.; Wierman, A.; and Yu, M.
2015. Hopper: Decentralized speculation-aware cluster
scheduling at scale. In Proc. of SIGCOMM.

Richert, D., and Cortés, J. 2015. Robust distributed linear
programming. Trans. Autom. Control 60(10):2567–2582.
Riquelme, C.; Johari, R.; and Zhang, B. 2017. Online active
linear regression via thresholding. In Proc. of AAAI.
Sanghavi, S.; Malioutov, D.; and Willsky, A. S. 2008. Lin-
ear programming analysis of loopy belief propagation for
weighted matching. In Proc. of NIPS, 1273–1280.
Sridhar, S.; Wright, S. J.; Ré, C.; Liu, J.; Bittorf, V.; and
Zhang, C. 2013. An approximate, efficient LP solver for LP
rounding. In Proc. of NIPS, 2895–2903.
Taskar, B.; Chatalbashev, V.; and Koller, D. 2004. Learning
associative markov networks. In Proc. of ICML.
Trevisan, L. 1998. Parallel approximation algorithms by
positive linear programming. Algorithmica 21(1):72–88.
van der Vaart, A., and Wellner, J. 1996. Weak Convergence
and Empirical Processes With Applications to Statistics.
Springer Series in Statistics. Springer-Verlag New York.
Woodruff, D. P. 2014. Sketching as a tool for numerical
linear algebra. Found. and Trends in Theoretical Computer
Science 10(1-2):1–157.
Yarmish, G., and Slyke, R. 2009. A distributed, scalable
simplex method. J. of Supercomputing 49(3):373–381.
Young, N. E. 2001. Sequential and parallel algorithms for
mixed packing and covering. In Proc. of FOCS, 538–546.
Yuan, M., and Lin, Y. 2007a. Model selection and estimation
in the gaussian graphical model. Biometrika 94(10):19–35.
Zurel, E., and Nisan, N. 2001. An efficient approximate
allocation algorithm for combinatorial auctions. In Proc. of
EC.

