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Abstract

As the society is increasingly characterized by an explosion

of digital traffic, maintenance of the network infrastructure is

becoming ever more important. Frequently, the maintenance

requires a solution that does not only respond to faulty in-

cidents but also predicts and prevents them from occurring.

In this study, we design a deep learning system for online

fault prediction for services on Optical Transport Networks

(OTN), which is an efficient infrastructure to transport data

for telecommunications and service provider networks. This

system exploits heterogeneous network data, and realizes au-

tomatic offline training and daily online service fault predic-

tion. We show that the combination of time series features

and network topology features can provide a considerable

improvement in prediction accuracy. In addition, we deal

with label uncertainty using advances in deep learning tech-

niques to make further improvement. The system has been

deployed on three OTN networks, with each serving millions

of users. Experimental evaluation on the deployed system on

one OTN network shows that the proposed model achieves

a “precision” of 85.1% and a “recall” of 73.2%.

1 Introduction

Dealing with an explosion of digital traffic driven by
multimedia services, mobile applications, social media,
VoIP, and cloud computing, Optical Transport Network
(OTN) is an efficient infrastructure to transport data
for telecommunications industry and service provider
networks. It wraps each client payload transparently
into a signal for transport across optical networks. Each
client signal can contain different traffic types, including
Ethernet, storage, digital video, as well as Synchronous
Optical Networking/Synchronous Digital Hierarchy.

There are over one thousand OTN networks across
the world. Take the OTN network studied in this work
as an example, it serves 1661 client signals and can
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support millions of users accessing Internet, in addition
to performing other tasks. The typical capacity of a
client signal can be 10, 40, or 100 GB/s, with 100 GB/s
being the mainstream nowadays. If the traffic in a 100
GB/s client signal is purely for mobile Internet service,
it can support up to tens of thousands of users. We refer
to a client signal as a service in the rest of the paper for
simplicity.

Due to long travel distance and multiple stages
involved in the transportation of a service, it is subject
to fault, affecting all the digital traffic therein. A fault
occurs when a service performance index drops below a
configured threshold. It is recorded as an alarm event
by the network management. Typically, thousands of
incidents of service faults occur in OTN networks every
day across the world, potentially affecting millions of
users. Around 60% of these incidents are associated
with optical channel deterioration or optical module
deterioration. If they can be predicted and prevented
beforehand, it can provide considerable benefits to both
the network operators and users.

However, the current maintenance scheme is mostly
responsive, with mitigation measures being deployed in
response to the occurrence of faults; meanwhile, end
users may experience service interruption throughout
the time-consuming troubleshooting process, which may
range from tens to hundreds of minutes. For this
reason, there is a strong demand of a solution to predict
and prevent faults from happening. This problem can
be formulated as a binary classification problem on
whether a service is going to fault in the near future.
Although seemingly a simple problem, it is non-trivial
because several challenges exist:
B Heterogeneous data sources. We collect both
key performance index of services in the form of time
series and network topology data. Time series data
alone cannot provide enough discriminative features, as
the network topology also provides useful information
(in terms of the path a service traverses) for fault
prediction. How to extract discriminative features from
both spatial and temporal data and incorporate them
into the classification model is a challenge.
B Cost effectiveness. To provide a cost-effective
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solution, the proposed system needs to be able to
perform model training without requiring too many
human efforts in labeling training instances. This is
due to the consideration that different OTN networks
may have different discriminative patterns and that the
network dynamics may change the patterns over time.
Therefore, an automatic instance creation and labeling
method is needed in order to achieve a cost-effective
prediction system.
B Instance label uncertainty. The third challenge
is common for classification problems, but it is particu-
larly severe when instances are labeled in an automatic
instead of manual manner. Label uncertainty has two
aspects: 1) instances may be labeled incorrectly, re-
sulting in noisy label problems; and 2) some instances
may be unlabeled. An effective semi-supervised learning
technique is needed to deal with the label uncertainty.

Recognizing the needs and challenges, we exploit
the availability of network data, advances in machine
learning, and domain expertise, and develop a deep
learning system for online service fault prediction.
Specifically, the system performs online classification to
predict whether each service is going to fault in the near
future. Combining with fault localization methods, the
prediction system can potentially reduce the number of
incidents of service faults considerably. Contributions
of this study are summarized as follows.
B A deep learning based service fault prediction
model. We propose a deep learning based model that
can efficiently work on spatial-temporal data. Deployed
in a metropolitan OTN network, this model achieves a
“precision” of 85.1% and “recall” of 73.2%1, consider-
ably outperforming alternatives such as Random Forest
(RF). To the best of our knowledge, the proposed deep
learning model is the first of its kind reporting the use
of deep learning techniques for online fault prediction
for services on OTN networks.
B Effective feature extraction based on hetero-
geneous sources of data. To fully exploit the spatial-
temporal nature of the network data, we construct three
categories of features: path embedding features, histori-
cal KPI features and historical alarm features. Specif-
ically, network embedding technique is used to extract
spatial features and Temporal Convolutional Network
(TCN) is employed to extract temporal features. These
features are complementary to each other in the predic-
tion model.
B Automatic instance labeling and semi-
supervised learning. Based on service alarm data,
we propose a labeling scheme in a “conservative” way

1Here “precision” and “recall” refer to TRR and FPR defined
in Section 5.1, respectively.

Figure 1: OTN in the context of mobile Internet service.

and create both labeled and unlabeled instances. To
deal with label uncertainty, we use Neural Graph Ma-
chine (NGM) [3], a graph-based semi-supervised learn-
ing method, to facilitate and regularize the training of
the deep learning model.

2 Data

Our study is based on a production OTN system of
mobile network in a metropolitan area serving around
4.5 million users. We use this network to motivate the
design of our solution, yet our methodology is applicable
to other OTN systems for service fault prediction. In
this section, we first provide a general overview of the
OTN architecture, and then describe the data format
for our analysis.

2.1 OTN Architecture An OTN is composed of
a set of optical network elements (ONEs) connected
by optical fibre links. It is an important transmission
part of a mobile network or a fixed network. Figure 1
shows a simplified mobile network architecture, where
the OTN is responsible for transporting signals between
Access Network and Core Network, both of which are
essential for providing Internet access for users in a
mobile network. An OTN can be modeled as a directed
graph, denoted as G = (V,E), where V represents the
set of ONEs and E ⊆ V × V corresponds to the optical
fibre links.

A service refers to a continuous stream of digital
traffic, which is added to the transport network at one
node and dropped off at another to reach its destination.
Typically there are thousands of services transporting
on one OTN system. We use s to denote a service, and
S to denote the set of services transporting on an OTN
G. The sequence of nodes a service traverses is called
its path, denoted as (v1, v2, . . . , vn), where vi ∈ V for
i = 1, 2, . . . , n and (vi, vi+1) ∈ E for i = 1, 2, . . . , n− 1.
We use P to denote the set of all paths in G, and s(P)
to denote the path of service s.
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Figure 2: Topology of the studied OTN network.

2.2 Data Collection The data we collected can be
classified into three categories: network configuration,
key performance indicator (KPI) and alarm data. The
network configuration information was obtained from
a network management system. We collected the KPI
and alarm data by probes in our OTN network from
February 1 to April 25, 2018, and from June 15 to
August 19, 2018, for a total of 149 days. The data
from the first period is used for training our model and
the data from the second period for testing. In the
following, we describe these three categories of data and
their statistics.
Network configuration. Network configuration spec-
ifies the path of each service, which allows us to establish
the OTN topology. Although the network configuration
may vary in the long run, it does not change often in
the short term and therefore is considered stationary.
Figure 2 displays the topology of the studied OTN net-
work, in which there are a number of disconnected sets
of nodes. Each set of nodes is responsible for connect-
ing users in one part of the metropolitan area with the
core network. There are 2030 nodes in the whole net-
work, and 1661 services transporting on it. The number
of distinct paths supporting these services is 853. On
average, a path carries about two services. The aver-
age length of a path is about 9.9. All services share
at least one node with other services. These statistics
imply substantial path overlap among services.
KPI data. KPI data contains information measuring
the system’s performance. There are different kinds of
KPI data, among which we select the received optical
power (ROP) and bit error ratio (BER) for modeling
after discussing with domain experts. KPI data are
available at nodes where services are dropped off. Each
service has separate KPI data even when multiple
services are dropped off at the same node. KPI data are
collected at a 15-minute interval. At time t, we denote
the collected KPI data for service s as a two-dimensional

vector measuring ROP and BER as follows:

(2.1) xst = [xst (1), xst (2)].

The KPI data of a service s form a multivariate time
series over time, and is denoted as (xs1, x

s
2, . . . , x

s
T ) over

time stamps 1, 2, . . . , T . For each service on each day,
we collect 96 KPI data points, and in total we have
23, 758, 944 KPI data points.
Alarm data. When the service quality declines below
a predetermined threshold, an alarm is triggered. An
alarm record contains the alarm occurrence time, du-
ration and alarm type. Since the fault prediction for
services is performed on a daily basis in this study, we
use asi ∈ {0, 1} to indicate whether an alarm occurs on
day i for service s. After preprocessing, there are a to-
tal of 1, 262 alarms recorded during the observed period.
96% of the days (out of 149 days) have alarms recorded,
the average number of alarms in a day is 8.46, and the
maximum number of alarms in a day is 46. Among all
the services running in the network, 22% of them (out
of 1661 services) have alarms, the average number of
alarms for a service is 0.75, and the maximum number
of alarms for a service is 18 for the whole period.

2.3 Instance Creation We create instances for each
service on a daily basis. For example, instance si is
created for service s on day i based on the network
topology, the observed KPI data and alarm data as
follows:

• Instance si takes s(P), the path of service s, into
consideration.

• Instance si considers the KPI time series of service
s within a window of 7 days before day i, i.e.,

(2.2) {xst : time t falls within days [i− 7, i]}.

As a result, the observed KPI time series in instance
si contains 672 data points in a 2-dimensional
space. Note that if there are NaN values in the
time series, si will not be included in our instance
collection.

• Instance si also takes the sequence of historical
alarm data of service s within the last 30 days
before day i, i.e.,

(2.3) {asj : i− 30 ≤ j ≤ i− 1}.

Using the above instance creation method, we cre-
ated 200, 731 instances from all services, among which
118, 525 instances are created from the training period
and 82, 206 from the testing period.
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2.4 Instance Labeling For historical instances, we
add labels to them according to the following criteria:

• If an alarm is triggered on day i + 1 for service s,
we label instance si as 1, i.e., service fault;

• If no alarm is triggered in the vicinity of day i for
service s, we label instance si as 0, i.e., no service
fault. In our experiments, we define the vicinity as
15 days before and after day i;

• All other instances not satisfying the above two
conditions remain unlabeled.

According to the above criteria, we label a service
as faulty in a “conservative” way, i.e., only an alarm is
triggered immediately after day i, instance si is labeled
as faulty. For an instance with no alarm triggered 15
days before and after day i, it is safe to conclude that
the instance does not lead to any service fault. For other
instances which have some alarms triggered in a window
of 15 days but not on the immediate following day, it is
hard to conclude whether they trigger any service fault
or not. So we would rather leave them as unlabeled
to reduce label uncertainty. These unlabeled instances
can be incorporated in the learning process via semi-
supervised learning techniques.

Based on the above labeling method, we report the
number of instances in class 0, class 1 and unlabeled
instances in Table 1. In particular, the ratio of class 0
to class 1 instances is about 210 : 1. Thus the class
labels are highly imbalanced.

Table 1: The number and percentage of instances for
different classes in the training and testing periods.

Class 0 Class 1 Unlabeled
Training 100, 543 (84.8%) 412 (0.3%) 17, 569 (14.8%)
Testing 68, 716 (83.6%) 392 (0.5%) 13, 097 (15.9%)

3 Problem Formulation

Our study aims to perform fault prediction for services
on OTN based on the collected data. It is formulated
as a classification problem where the outcome variable
is whether a service will have service fault in the near
future, between day i and day i + p. We perform the
prediction on a daily basis. On day i, the instance of
service s, si is created based on the above-mentioned
method. We aim to build a classifier denoted as a
function f , which takes si as input and makes service
fault prediction on the OTN.

4 Feature Extraction and Model Learning

4.1 Solution Overview To build a classifier for ser-
vice fault prediction, we need to extract discriminative
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Figure 3: Solution overview.

features from the collected data. To exploit the spatial-
temporal nature of the network data, we define three
types of features, denoted as z1, z2, z3 respectively, that
are complementary to each other. The first type of fea-
tures, called path embedding features, is extracted from
the path a service traverses by the embedding technique.
The second type of features, called historical KPI fea-
tures, is extracted from the KPI time series by a Tem-
poral Convolutional Network (TCN) [1]. The third type
of features, called historical alarm features, is extracted
from the historical alarm data as in Eq. (2.3). Specif-
ically, for an instance si, its historical alarm feature is
the number of days with alarms in the previous 30 days:

(4.4) z3(si) =
∑

i−30≤j≤i−1

asj .

This feature reflects how inclined a service is to fault in
the recent history.

Figure 3 gives an overview of our solution. During
prediction, the concatenation of the extracted features
z1, z2, z3 are passed through a few fully connected layers
to produce a score, as illustrated by instance i in the
figure. In order to efficiently train the model, Neural
Graph Machine (NGM) is employed to utilize both
labeled and unlabeled instances. Labeled instances,
such as instance i, is used to construct a supervised
loss; while both labeled and unlabeled instances, such
as instance i and j, are used to form an unsupervised
loss, by ensuring “similar” instances resulting in similar
historical KPI features z2. Together, the supervised and
unsupervised losses constitute the training target. To
further improve the performance, snapshot ensemble is
employed in making predictions. In the following, we
introduce these components in details.

4.2 Path Embedding Path embedding feature rep-
resents the service paths in a low-dimensional space and
captures the path similarity from the network topology
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perspective. Intuitively, if two paths overlap with each
other significantly, their embeddings should be “close”
in the representation space. It is constructed using a
two-step approach. The first step is to generate node
embeddings, denoted by U = {ui, i ∈ V }. We use the
spectral embedding technique to generate node embed-
dings. It is based on the spectral decomposition of the
graph Laplacian, and each dimension of the embedding
space corresponds to an eigenvector of the Laplacian
matrix [5]. We take the first 96 eigenvectors to establish
U . In the second step, the path embedding for instance
si is computed by averaging the embeddings of nodes
on the path of service s, i.e.,

(4.5) z1(si) =
1

|s(P)|
∑

j∈s(P)

uj ,

where |s(P)| denotes the number of nodes that service
s traverses. Note that other node embedding methods,
such as Node2Vec [7], have been investigated, but they
are less effective.

The path embedding for each instance has the
same dimension as the node embedding. It is a useful
feature in predicting the service faults from the network
topology perspective. Applying a distance function on
the path embeddings of different services can capture
the similarity of the paths they traverse.

4.3 Temporal Convolutional Network TCN is a
generic convolutional architecture that is designed for
sequence modeling tasks. It is used to extract historical
KPI features z2 in this study. The reason to use
TCN instead of LSTM [9] is that the former performs
better at capturing longer effective memory [1], as
demonstrated in a subsequent comparison analysis in
Section 5.

Figure 4 depicts the structure of a TCN. The basic
elements in a TCN are residual blocks, each of which is
parameterized by the kernel size k, the dialation rate d
and the number of output channels c. In a residual
block, dialated causal convolution is used to extract
features from the inputs. For example, the first residual
block in Figure 4 takes the historical KPI time series
data (∈ R672×2) as input, and subsequently applies two
identical dialated causal convolution layers to generate
the first-level hidden representation (∈ R672×c, where
c = 64 for the first residual block). The j-th (j =
{1, 2, . . . , 672}) row of the hidden representation is
the dialated causal convolution results from c different
filters, each with a kernel size k and dialation rate d.

A stacking of several such residual blocks forms a
TCN. Usually, the dialation rate d increases exponen-
tially with the depth of the network, i.e., d = 2i−1 in
the i-th (i = {1, . . . , n}) residual block. By carefully
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Figure 4: Overview of TCN.

designing the parameters in each residual block, TCN
enables its outputs to represent features extracted from
different ranges of inputs, i.e., achieve different recep-
tive fields. In general, the receptive field of a TCN with
n residual blocks and exponentially increasing dialation
rate can be computed as in [4]:

(4.6) F (n) = 1 + 2 ∗ (k − 1) ∗ (2n − 1).

In our study, we stack 5 residual blocks in a TCN, i.e.,
n = 5. Each residual block has the kernel size k = 12,
the number of channels c = 64, and the dialation rate
at the i-th (i = {1, 2, 3, 4, 5}) residual block as d = 2i−1.
From Eq. (4.6), we know that this TCN has a receptive
field of length 683, which is large enough to cover the
historical KPI time series data. We take the last row of
the hidden representation in the last residual block as
the historical KPI features for the input instance.

4.4 Neural Graph Machine NGM is a graph-based
semi-supervised learning technique that has been shown
to outperform many existing methods on a wide range
of tasks, with multiple forms of graph inputs and using
different types of neural networks [3]. The main idea
of NGM is to leverage the information encoded in the
graph structure when training the neural network. In
the following, we first introduce the graph we construct
based on the instances, and then present the details of
how the graph information is leveraged in NGM.

To exploit the spatial-temporal nature of the net-
work data, we construct a fully connected graph with
each instance being a node in the graph. Formally, we
denote the graph as G̃ = (Ṽ , Ẽ), where Ṽ is the set
of instances and Ẽ is the set of edges that capture the
spatial-temporal similarity among instances. Further,
we denote the set of labeled and unlabeled nodes as Ṽl
and Ṽu, respectively. The weight on edge (i, j) ∈ Ẽ,
denoted as wi,j , is defined as the product of the spatial
and temporal similarity between two instances i and j.
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Specifically, wi,j is calculated as follows:

(4.7) wi,j = I(t(i) == t(j))× cos (z1(i), z1(j)) + 1

2
,

where I(·) is an indicator function, t(i) is the day on
which instance i is collected, z1(i) is its path embedding,
and cos(z1(i), z1(j)) ∈ [−1, 1] computes the cosine
similarity between z1(i) and z1(j). The first term
represents temporal similarity, i.e., two instances are
temporally similar if they are collected on the same
day. Although it seems more reasonable to use a
smooth function for measuring the temporal similarity,
discontinuity in time series data caused by irregular
network maintenance (human intervention) justifies the
choice of the indicator function. The second term stands
for the spatial similarity, and is computed as the shifted
cosine similarity between path embedding features.

Based on the assumption that neighbouring nodes
in the graph G̃ have similar historical KPI features,
NGM incorporates the graph information by adding a
regularization term in the loss function. Specifically,
the loss function in NGM contains two terms: the
supervised loss from the labeled instances and the
unsupervised loss from the neighbouring instances (both
labeled and unlabeled). Formally, the loss function in
NGM can be expressed as:
(4.8)

L(θ) =
∑
i∈Ṽl

c(gθ(i), yi) + α
∑

(i,j)∈Ẽ

wi,jd(z2(i), z2(j)),

where gθ(·) denotes overall output of the deep learning
algorithm parameterized by θ, z2(·) denotes the histor-
ical KPI features extracted from TCN, yi denotes the
label of instance i, c(·, ·) denotes supervised loss function
and d(·, ·) denotes unsupervised loss function. The pa-
rameter α controls the relative importance of supervised
and unsupervised loss. With this new loss function in
Eq. (4.8), both label information from labeled instances
and graph information from neighbouring instances can
be leveraged to update the neural network through back
propagation. In our study, we set α = 0.1, and use cross
entropy and squared l2 norm for supervised loss c(·, ·)
and unsupervised loss d(·, ·), respectively.

4.5 Snapshot Ensemble To further improve the
performance of deep learning algorithm, we implement
snapshot ensemble [10], which is a technique that can
ensemble multiple neural networks at no additional
training cost.

In snapshot ensemble, the training process is split
into M cycles, each of which starts with a large learning
rate l0. The learning rate is then annealed in each iter-

ation according to a shifted cosine function as follows:

(4.9) l(t) =
l0
2

(1 + cos(
πmod(t− 1, dN/Me)

dN/Me
)),

where N is the total number of training iterations. At
the end of each training cycle, the model is stored (i.e.,
take a snapshot). At the testing time, the predictions
from m ≤ M snapshots are averaged to form the
final output. Intuitively, the model will converge to a
local minimum at the end of each cycle, and the large
learning rate at the beginning of the cycle allows the
model to escape from the current local minimum. Thus
essentially snapshot ensemble improves the performance
of neural network by exploiting the diversity in different
local minima visited during each cycle. In our study, we
set the initial learning rate l0 = 0.002. For training,
the Adam optimizer is used and the learning rate
is annealed in each iteration according to Eq. (4.9).
During the training process, we take M = 4 snapshots,
and for testing we use the averaged output of m = 4 as
the final result.

5 Evaluation

In this section, we evaluate our proposed method in
service fault prediction. During the evaluation process,
only instances from the testing period are used to
compute the performance metrics.

5.1 Metrics In order to evaluate the effectiveness of
the prediction model in real-world applications, we use
several metrics similar to the ones used in disk failure
prediction [16]. In principle, a desired model should be
able to predict at least one of the instances collected
within the last p days before the alarm to be positive;
meanwhile, for the instances collected before the last p
days, the model should not predict any of them to be
positive.

To evaluate, we first split the testing period for
each service into sub-periods in the following way: the
first sub-period starts at the beginning of the testing
period and ends on the day when the first alarm occurs;
subsequently, the second sub-period starts on the day
after the first period and ends on the day where the
next alarm occurs; we repeat this process, and the
last sub-period ends on the last day of the testing
period. If a sub-period ends with an alarm, it is called
a faulty period, otherwise it is called a normal period.
As a result, in the testing period, we have 1612 normal
periods and 605 faulty periods. The average length of
normal periods and faulty periods are 53.38 and 12.86
days, respectively.

Then, we define fault prediction rate (FPR) and
true risk rate (TRR) for evaluation. For each faulty
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period, a fault is correctly predicted (i.e., true positive)
only when at least one of the instances collected within
the last p days before the alarm is classified as positive.
Otherwise, the fault is not correctly predicted (i.e., false
negative). FPR is then defined as the fraction of faults
that are successfully predicted to occur:

FPR =
#true positives

#true positives + #false negatives

Similarly, for each sub-period (both normal and
faulty periods), a false positive occurs when any in-
stance collected outside the last p days is predicted pos-
itive2. TRR measures the precision of fault prediction:

TRR =
#true positives

#true positives + #false positives

Note that there is an analogy between TRR (resp. FPR)
and precision (resp. recall). There is usually a trade-
off between TRR and FPR, which can be summarized
using the TRR-FPR area under curve (TFAUC). In the
following, we use TRR, FPR and TFAUC to evaluate
the performance of the predictors. When computing
the above metrics, the parameter p is set to 30 days,
which is determined according to the domain knowledge
that there might be a long deterioration period before a
service fault happens. Intuitively, the smaller p is, the
smaller TFAUC will be, as the window for prediction is
shorter. In order to investigate the impact of parameter
p, a sensitivity analysis is conducted and presented in
subsection 5.3.

5.2 Results In this subsection, we first evaluate the
classification performance by each category of features
in service fault prediction. Then we report the overall
performance of our proposed deep learning method, and
show its superiority by comparing to other alternative
classifiers.
Effects of features. To demonstrate the effect of
each category of features, we employ Random Forest
(RF) algorithm to train a classifier that takes a subset
of [z1, z2, z3] as input. The reason to use RF instead
of the proposed deep learning method to perform this
task is two-fold: (a) RF is employed widespread, off-the-
shelf and quick to yield results, and (b) it can provide
a baseline to demonstrate the efficacy of the proposed
deep learning method. When using a RF classifier, we
manually extract features from each dimension of an
instance’s observed historical KPI time series data and
concatenate them to construct z1. The features we used

2If p is larger than the length of the period, then there is no
false positive.

include: (a) basic statistics, such as maximum, mini-
mum, standard deviation, and slope; (b) fast Fourier
transformation, and (c) wavelet transformation. These
features are typically helpful in time series classification
problems. To tackle the class imbalance issue in the
training data set, we applied random downsampling and
fixed the ratio between negative and positive instances
in the training set to be 10:1. A RF classifier was built
from the sample training set and subsequently employed
to make predictions for the testing instances. For ease
of comparison, we fix TRR at 0.853 and compare FPR,
in addition to comparing TFAUC. To account for the
randomness in the downsampling and training process,
we run 10 trials for each experiment setup and report
the mean and standard deviation for FPR and TFAUC,
respectively.

The classification results are reported in Table 2. In
the first column, the symbols in the parenthesis indicate
how a classifier is trained. For example, RF(z1, z2)
means that the classifier is trained with input features
from z1 and z2. As shown in the first three rows of
the table, we can observe that the inclusion of each
additional category of features provides incremental
benefit to the model performance. Specifically, if we
compare RF(z1, z2, z3) with RF(z2), we can see that
the RF classifier achieves a considerable improvement in
FPR (5.2%) and TFAUC (4.3%) on average. This result
verifies the effectiveness of each category of features
proposed in this study.
Performance of the baseline. In order to establish
a strong performance baseline, other classifiers have
also been investigated, such as Support Vector Machine
(SVM)4, Logistic Regression (LR) and XGBoost, to
conduct the experiment. The results are also reported in
Table 2. We can observe that all of the three classifiers
perform worse in terms of TFAUC, as compared to RF.
In particular, on average XGBoost has a TFAUC of
0.835, which is the highest among the three classifiers,
but still 1.6% lower than that of RF. Therefore, we
consider the result of RF as our baseline for subsequent
comparison. Note that deep learning based time series
anomaly detection methods such as TCN and LSTM
have also been investigated, but their outcomes are
significantly below the above baselines and therefore
they are not reported here.
Performance of the proposed method. In our
method, batch gradient descent is employed to train
the proposed deep learning model, and a random over-
sampling scheme is used to generate the training batch.
Specifically, in each iteration, 128 instances are sam-

3If we can not find a TRR that equals to 0.85, we set TRR to
be the smallest number that is larger than 0.85.

4We use the RBF kernel for SVM.
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Table 2: Results on feature effect and performance of
different classifiers.

Algorithm TRR FPR TFAUC
RF(z2) 0.851 0.510± 0.063 0.808± 0.007
RF(z1, z2) 0.850 0.513± 0.082 0.836± 0.011
RF(z1, z2, z3) 0.851 0.562± 0.086 0.851± 0.012

SVM(z1, z2, z3) 0.865 0.074± 0.047 0.703± 0.010
LR(z1, z2, z3) 0.851 0.527± 0.052 0.811± 0.014
XGBoost(z1, z2, z3) 0.851 0.552± 0.081 0.835± 0.014

DLLSTM (α = 0) 0.851 0.432± 0.070 0.802± 0.016
DLLSTM (α = 0.1) 0.850 0.537± 0.032 0.834± 0.007

DLTCN (α = 0) 0.851 0.624± 0.023 0.858± 0.003
DLTCN (α = 0.1) 0.851 0.732± 0.015 0.884± 0.002

pled with the class ratio among positive, negative and
unlabeled instances being fixed at [0.1, 0.8, 0.1]. This
batch sampling scheme can effectively deal with learn-
ing problems associated with class imbalance. Recall
that the Adam optimizer is used for training and the
learning rate is annealed in each iteration according to
Eq. (4.9) with an initial learning rate l0 = 0.002.

Two experiments on our proposed method are con-
ducted. In the first experiment, parameter α is set to 0.
This indicates that we do not consider the unsupervised
loss in the deep learning model. In the second experi-
ment, α is set to 0.1 to incorporate the unsupervised loss
based on the constructed instance graph. The results for
both experiments are listed in the last two rows of Ta-
ble 2. If we compareDLTCN (α = 0) with RF(z1, z2, z3),
the former has a slightly better performance in TFAUC
(0.7%), and a considerable improvement in FPR (6.2%).
In addition, DLTCN (α = 0.1) achieves improvement in
each metric, compared with both DLTCN (α = 0) and
RF(z1, z2, z3). In particular, DLTCN (α = 0.1) increases
FPR and TFAUC by 17% and 3.3%, respectively, in
comparison to the RF baseline. This demonstrates the
efficacy of the proposed method and the benefit of uti-
lizing unlabeled data. Moreover, we note that the deep
learning method has the smallest standard deviation
in FPR and TFAUC among all the classifiers, which
demonstrates its reliability and robustness.
Comparison between TCN and LSTM. It is of
interest to conduct a comparison between TCN and
LSTM to investigate which method can more effectively
extract temporal features in our case. To make a fair
comparison, we replace TCN in the proposed method
with LSTM, and it is denoted as DLLSTM . The number
of hidden units in LSTM is set to be 64, which is the
same as the number of channels in TCN. We stack
multiple LSTM layers to conduct the experiment and
find that 1 layer LSTM has the best performance. We
apply the same experiment settings to DLLSTM , and
results are reported in Table 2. We can observe that

the TFAUCs of DLLSTM are around 5% less than
the counterparts of DLTCN , under settings with and
without unsupervised loss. The potential reason for the
less effectiveness of LSTM in our case is that, the length
of the input time series (i.e., 672) is considerably long,
which can be better handled by TCN as argued by Bai
et al. [1].

5.3 Sensitivity Analysis We investigate the im-
pact of parameter p on the prediction performance.
We report TFAUC for parameter p taking values in
[5, 10, 15, 20, 25, 30]. This experiment is carried out for
RF(z1, z2, z3) and DLTCN (α = 0.1). Figure 5 depicts
the results. Overall speaking, the prediction perfor-
mance increases as a function of parameter p, which
is consistent with our expectation. In addition, it is
worth noting that the proposed deep learning algorithm
consistently outperforms RF algorithm across different
predictive window sizes.
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DLTCN( = 0.1)

Figure 5: Sensitivity analysis for parameter p.

6 Related Work

Graph-based semi-supervised learning. Graph-
based semi-supervised learning aims to leverage unla-
beled data together with the graph structure to im-
prove performance [2, 11, 18]. Depending on how the
graph information is used, graph-based semi-supervised
learning algorithms can be broadly categorized into
convolution-based and regularization-based algorithms.
The convolution-based algorithms, such as GCN [11],
GraphSAGE [8] and GAT [15], try to learn node embed-
ding by generalizing conventional convolution operator
on arbitrarily structured graphs. The regularization-
based algorithms incorporate the graph information in
the model by explicitly adding a graph regularization
term in the loss function [18]. Prominent examples in-
clude label propagation [20], manifold regularization [2]
and planetoid [18]
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The NGM [3] belongs to the regularization-based
method and it can be viewed as a generalization of
the aforementioned algorithms, in the sense that NGM
can work with multiple neural network architectures
(CNNs, RNNs) and on multiple forms of graph inputs
(constructed or natural). In our proposed deep learning
model, NGM works on a constructed graph to utilize the
spatial-temporal similarity among training instances to
perform semi-supervise learning, which we think is a
novel approach to dealing with label uncertainty issues.
Machine learning methods for spatial-temporal
data. In our problem, the data contain both topology
(spatial) and time-series KPI (temporal) information.
How to efficiently extract and utilize the spatial and
temporal features is a key challenge. Various machine
learning models have been proposed to deal with spatial-
temporal data, including classical methods such as
STARIMA [6], Gaussian Process [13], etc., and deep
learning methods such as convLSTM [17], DCRNN [12],
STGCN [19], etc. A detailed survey can be found in [14].

The existing deep-learning methods operate on the
node level and work by implicitly capturing spatial
features. In our case, however, we explicitly extract
spatial features and concatenate them with temporal
features to form the full feature vector, due to the
difficulty of representing a service/path as a node in
a constructed graph while maintaining the complex
relations among service/path in the original graph.
Experiment results demonstrate the effectiveness of
such methods.

7 Conclusion

We design and implement a cost-effective deep learning
system for service fault prediction on OTN. The system
is based on the availability of network data, advances in
machine learning techniques and expertise knowledge.
It combines three categories of features (i.e., path em-
bedding, historical KPI features and historical alarm
features) to optimize the prediction accuracy. Further-
more, it exploits the advances in neural network tech-
niques to account for label uncertainty to improve the
accuracy. It has been deployed and tested on three OTN
networks, with each serving millions of users. Evalua-
tion shows that the proposed system can achieve a su-
perior level of prediction performance.
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